Part I Overview and General Topics: Environmental Fluid Dynamics. Research in EFD and Its Policy Implications. Interdisciplinary Dynamics in EFD Research. Climate Change and Its Effects on Environmental Fluid Systems. Sustainability Implications. Air Quality and Management. Forecasting and Management of Coastal Water Quality. Soil and Aquifer Management. Security and Environmental Fluid Dynamics. Large-Scale Disasters. Risk Assessment. Environmental Law. Part II Focus Areas for Study of Natural Systems: Physical Limnology. Microbial and Ecological Fluid Dynamics. Micro- and Nano-Scale Flows Relevant to the Environment. Volcanic Flows. Buoyant Outflows to the Coastal Ocean. Hydrodynamics of Coastal Circulation. Ice Dynamics and Transport. Part III Fundamental Flow Phenomena and Turbulence: Turbulence in the Environment. Turbulent Dispersion. Stratified Hydraulics. Hydraulics of Vegetated Canopies. Canopy Turbulence. Jets and Plumes. Stratified Wakes and Their Signatures. Gravity Currents and Intrusions. Internal Gravity Waves. Rotation Effects in Environmental Flows. Vortex Dynamics. Surface Waves in Coastal Waters. Drops and Bubbles in the Environment. Particle-Laden Flows. Sediment Transport. Flows Involving Phase Change. Turbulent Gas Transfer across Air–Water Interfaces. Convection. Convection (Rotating Fluids). Double-Diffusive Instabilities. Shallow Shear Flows in Surface Water. Shallow Granular Flows. Turbidity Currents and Powder Snow Avalanches. Mechanics of Debris Flows and Rock Avalanches. Index.
Harindra Joseph Shermal Fernando is the Wayne and Diana Murdy Endowed Professor of Engineering and Geosciences at the University of Notre Dame, with the primary affiliation in the Department of Civil and Environmental Engineering and Earth Sciences and a concurrent appointment in the Department of Aerospace and Mechanical Engineering. He has received numerous awards and honors, including a UNESCO Team Gold Medal (1979), Presidential Young Investigator Award (NSF, 1986), and Rieger Foundation Distinguished Scholar Award in Environmental Sciences (2001). He is a fellow of the American Society of Mechanical Engineers, American Physical Society, and American Meteorological Society and was elected to the European Academy in 2009. He serves on the editorial boards of Applied Mechanics Reviews (associate editor), Theoretical and Computational Fluid Dynamics (editor, 1997–), IAHR Journal of Hydro-Environment (associate editor), Physics of Fluids (associate editor) and EGS Journal of Non-Linear Processes in Geophysics (editor). He is also the editor in chief of the Journal of Environmental Fluid Dynamics. Professor Fernando has published more than 225 papers spanning nearly 50 international peer-reviewed journals.
Praise for the Two-Volume Set"I strongly recommend the two-volume
Handbook of Environmental Fluid Dynamics to all scientists and
engineers involved in or just intrigued by the interplay of fluid
dynamics with the environment. Guided by the skillful editorship of
Joe Fernando, and dedicated to the memory of Owen M. Phillips, a
marvelous teacher and one of the top geophysical fluid dynamicists
of the past century, every topic of importance in environmental
fluid dynamics is superbly addressed by an outstanding selection of
authors; I predict the books will be an important resource for
years to come."
—Professor James J. Riley, University of Washington"This handbook
is probably the most prestigious and broadest survey in
environmental fluid dynamics that has come to light so far. It
brings together state-of-the-art knowledge of leading experts in
topics ranging from climate change and risk assessment to more
fundamental subjects such as turbulence and dispersion within two
volumes and 81 chapters. It promises to become one of the most
important references in this field."
—Professor Jan-Bert Flór, Laboratoire des Ecoulements Géophysiques
et Industriels, CNRS"Dr. Fernando has assembled an impressive team
of contributors from a wide range of fields. The book is as close
to a comprehensive view of the field as possible in one
handbook."
—Professor John S. Gulliver, University of Minnesota"This grand
two-volume set provides an excellent exposé of the vast
interdisciplinary field of environmental fluid dynamics including
its societal importance. The work spans time and space scales
ranging from small-scale stratified turbulence to large-scale
climate and introduces the reader to the many observational,
theoretical, and numerical techniques used to study outdoor flows—a
great resource."
—Dr. Peter Sullivan, National Center for Atmospheric Research"I
will definitely recommend this handbook to students and
stakeholders concerned by environmental problems."
—Professor Philippe Fraunié, Université du Sud Toulon-Var
![]() |
Ask a Question About this Product More... |
![]() |