Preface.- Part I Thermophiles in the environment.- Diversity of hot environments and thermophilic microbes.- Exploring the ecology of thermophiles from Australia’s Great Artesian Basin during the genomic era.- Hot environments from Antarctica.- Bacterial and biochemical properties of newly invented aerobic, high-temperature compost.- Role of thermophilic microflora in composting.- Metal remediation by thermophilic microorganisms.- CO-oxidizing anaerobic thermophilic prokaryotes.- Biomineralization in thermal environments.- Phylogeny and biological features of thermophiles.- Biology, biodiversity and application of thermophilic viruses.- Part II Genomics, Metagenomics and Biotechnology.- Genomics of thermophilic bacteria and archaea.- Comparative genomics of thermophilic bacteria and archaea.- Host-vector system in thermophiles.- Molecular chaperones in thermophilic eubacteria and archaea.- Heterologous Production of thermostable proteins and enzymes.- Discovery of thermostable enzymes from hot environmental samples by metagenomic approaches.- DNA polymerases and DNA ligases.- Molecular diversity of biotechnological relevance of thermophilic actinobacteria.- Mechanisms of thermostability adopted by thermophilic proteins and their use in white biotechnology.- Starch-hydrolyzing enzymes from thermophiles.- Thermostable archaeal and bacterial pullulanases and amylopullulanases.- Sugar metabolic enzymes.- Restriction enzymes from thermophiles.- Microbial chitinases.- Phytases and phosphatases of thermophiles: production, characteristics and multifarious applications.- Pectinases of thermophilic microbes.- Developments in thermostable gellanlyase.- Lignocellulolytic system of thermophilic fungi and actinomycetes.- Cellulases of thermophilic microbes.- 30 Xylanases from thermophilic fungi.- 31 Thermostable bacterial xylanases.- 32 Thermostable proteases.- 33 Microbial keratinases.- 34. Biocatalysis through thermostable lipases. Index.
![]() |
Ask a Question About this Product More... |
![]() |